
OpenBAS-NWK-ETH3 a true polyglot

The new firmware v3.09 of the OpenBAS-NWK-ETH3

adds BACnet/MSTP-tunneling with which you can

transparently, using System Design Studio (SDS),

configure any OpenBAS-NX controller on a BACnet/MSTP

network along other 3rd party controllers without any

effort.

Furthermore, as it also supports Modbus/RTU-MEI

tunneling (Modbus Encapsulated Interface) and has two

RS485 field buses besides the Ethernet IP port, you can

have on a single ETH3 Gateway a second fieldbus

network with NX controllers in Modbus/RTU along 3rd

party Modbus controllers and also configure them with

SDS.

This whitepaper provides detailed information on how

an Optomux message is transported first over HTTP

when requested via SDS using Ethernet to the ETH3 and

is then encapsulated and tunneled on either

BACnet/MSTP or Modbus/RTU RS485 fieldbuses.

System Design Studio

IP
HTTP

BACnet/MSTP

Modbus/RTU

ETH3

NX

NX

First let us take a look at the ports available on the ETH3:

10/100
Ethernet

USB
device

USB
host

I2C

SPI
Fieldbus
RS485

Fieldbus
RS485
RS232

The following table provides a detailed description of

each port use:

The updated firmware provides BACnet/MSTP support

only on COM1 as it is highly resource intensive.

Port Protocols supported

10-100

Ethernet

BACnet/IP on port 47808

Modbus/TCP on port 502

Telnet on port 23 with SQL for Arduino or Raspberry PI

HTTP on port 80

SMTP on ports 25 and 587

SNMP on port 161

FTP on port 20

COM1

RS485

BACnet/MSTP with tunneling

Modbus/RTU with MEI tunneling as master or slave

Optomux as master or slave

N2-Open as master or slave

SQL-Arduino-Raspberry PI

Mircom fire-panels

COM1

RS485

or

RS232

Modbus/RTU with MEI tunneling as master or slave

Optomux as master or slave

N2-Open as master or slave

SQL-Arduino-Raspberry PI

Mircom fire-panels

SPI Gateway to NX controllers

I2C Gateway to NX peripherals

USB
Used as device or host for web page or

massive data storage

First to convey an Optomux message using HTTP, SDS

generates a URL that provides information on how the

message should be routed, four different URL encodings

allow any of the following routes to be used internally on

the ETH3:

This is a typical URL that is requesting to send an

Optomux request to an NX controller that is connected

in COM1 that is configured to use a BACnet/MSTP

network using MAC ‘X06’:

http://192.168.100.95/com1_e.htm?id=39&cmd=>061E

7300000066\r&btn=Enviar

The URL encoding is shown below as provided on the

LOG file for IP communication, highlighting both the

request and the response or acknowledge:

The nice thing is that you can also use any browser to do

BACnet or Modbus tunneling without any effort, simply

copy and paste the URL and place it in any browser’s URL

field and you will automatically get an Optomux response

with the acknowledge encoded as shown below by the

ETH3’s integrated CGI (Common Gateway Interface):

A piece of cake!

The following diagram taken from SDS v1.1.0 manual,

shows the internal routings according to the URL:

Using Wireshark network analyzer software, we can

easily decode the information present on the

BACnet/MSTP network as depicted below:

As we can see, the BACnet/MSTP tunneling employs the

proprietary MSTP frame 222, thus if we dissect the MSTP

frame we will have the following:

The 0x55, 0xFF preamble followed by the frame type 222.

If we read the BACnet standard on section 9.3 MS/TP

Frame Format we find that:

“Frame Types 128 through 255 are available to vendors

for proprietary (non-BACnet) frames. Use of proprietary

frames might allow a Brand-X controller, for example, to
send proprietary frames to other Brand-X controllers that

do not implement BACnet while using the same medium

to send BACnet frames to a Brand-Y panel that does

implement BACnet.
Token, Poll For Master, and Reply To Poll For Master

frames shall be understood by all MS/TP master nodes.”

Then follows the Destination and source MAC addresses

followed by the payload’s data length (if any, otherwise

it is set to zero) and finally the header’s CRC checksum.

URL Use

opto22.htm ETH3/SPI_NX bridging

com1_e.htm ETH3/COM1 bridging or tunneling

com2_e.htm ETH3/COM2 bridging or tunneling

eth_22.htm ETH3 internal database

Then after the header, comes the DATA section, that

ahead or it contains a WORD indicating the Vendor ID of

that Frame, any of the following can be used for NX

controllers as taken form the ASHRAE’s BACnet site:

http://www.bacnet.org/VendorID/index.html

The DATA section contains the Optomux message that

uses the same compression method that Modbus MEI

(Modbus Encapsulated Interface) employs to allow code

reuse in both the ETH3 and NX firmware and is explained

below in detail:

If we take a look at the document:

Modbus_Application_Protocol_V1_1a.pdf that can be

downloaded from the www.modbus.org web page we

will find in the following section:

6.19 Function code 43 (0x2B) Encapsulated Interface

Transport

“Function Code 43 and its MEI Type 14 for Device
Identification is one of two Encapsulated Interface

Transport currently available in this Specification. The

following function codes and MEI Types shall not be part

of this published Specification and these function codes
and MEI Types are specifically reserved: 43/0-12 and

43/15-255.

The MODBUS Encapsulated Interface (MEI)Transport is
a mechanism for tunneling service requests and method

invocations, as well as their returns, inside MODBUS

PDUs.

The primary feature of the MEI Transport is the
encapsulation of method invocations or service requests

that are part of a defined interface as well as method

invocation returns or service responses.”

This is a typical Modbus MEI packet:

Because both BACnet and Modbus employ binary data

as compared to Optomux that uses ASCII encoded plain

text, to save space and make the tunneled data shorter

and faster to be conveyed, an encoding / decoding is

implemented by the ETH3 that compresses /

decompresses the tunneled Optomux message before

being placed into the BACnet or Modbus frames and is as

follows:

In modbus the data part of the tunneled Optomux

message is compressed if only hexadecimals characters

‘0’ thru ‘F’ are present on the message, the first character

of the message used as the START flag: ‘>’ is sent

uncompressed, the ‘\r’ END character is encoded as

either a 0xD character on the lower nibble of the last byte

and then the last byte will be encoded as 0x00 or if the

number of characters are even, then it will be encoded

as a 0x0D byte at the end.

Below is a Modbus-MEI encoded compressed packet.

For messages less than 3 bytes or that have other ASCII

characters outside of the ‘0’ thru ‘F’ range that are non-

valid Optomux characters, they are sent uncompressed

as shown below.

This encoding example for Modbus/RTU also applies to

BACnet/MSTP using the proprietary frame type 222

(0xDE) and the DATA occupies the rest of the packet.

Both protocols use a 16-bit CRC to verify the integrity of

the packet, and the tunneled message also contains its

own CRC thus the data’s integrity is double-fold verified

upon arrival as both CRC’s are checked.

http://www.bacnet.org/VendorID/index.html
http://www.modbus.org/

BACnet/MSTP networking tips:

To improve the operation of (any) BACnet/MSTP

network, the following points have to be followed, not

doing so will degrade the bandwidth and thus the

performance of the network:

• MAC addresses 0-4 are usually reserved for bus

Gateways, remember all BACnet/MSTP (Master-

Slave-Token-Passing) devices are both true

Masters and Slaves. When a MAC address holds

the Token it becomes the Master and all other

peers are then Slaves, hence it is a true multi-

master network. Only devices with “A”

functionality, normally used as Gateways employ

the largest part of the bandwidth for polling and

reading or writing data.

• All other (non-gateway or router) devices can

use MAC addresses 5 thru 127.

• Leave NO gaps or spaces between MAC

addresses to avoid waste maintenance Poll-For-

Master frames that in average stall the network

with a dead time around 20-80 milli seconds for

each frame sent when the polled device does not

exist or is off-line. Each 50 times that the token

is received by any MSTP device on the network,

it must do a maintenance poll-for-master cycle

looking for added devices to heal broken token

sequences. These are completely avoided by

using contiguous addresses.

• If possible, assign ETH3’s fields bus port COM1 to

use the last MAC address and set its MAX-

MASTER to its own MAC address + 1, to still allow

for more devices to be added on top of it if when

necessary and wasting no unnecessary time.

The following diagram shows a typical good networking

scenario.

0 5 6 7 8 9

BACnet/MSTP Gateway controller(s)
such as: JACE, AX, NAE usually added with

MAC addresses 0 thru 4

NX
controller

NX
controller

3rd party
BACnet
dervice

NX
controller

ETH3 gateway
MAX-MASTER

Set to 10

10

Additional
controllers can
be added here

1 2 3 4

Here the lower MAC addresses that are usually assigned

to gateways in the range 0 to 4, ensure they start the

token sequence ahead of any other devices that are

present. Then a no-gap MAC addressing scheme from 5

thru 8 is assigned. At the end place the ETH3 whose MAC

address is set to 9 and has its MAX MASTER set to 10 thus

it will only look up to address 10 before reverting back to

0 to search for other devices and pass the token.

A poor network addressing scheme is shown below,

where gaps exist between the MAC addresses.

0 10 20 30 40 50

BACnet/MSTP Gateway controller(s)
such as: JACE, AX, NAE usually added with

MAC addresses 0 thru 4

NX
controller

NX
controller

3rd party
BACnet
dervice

NX
controller

ETH3 gateway
MAX-MASTER

Set to 127

51

Additional
controllers can
be added here

1 2 3 4

Here, for example MAC address 10 will periodically every

50 tokens start a maintenance Poll-For-Master sequence

looking for MAC addresses: 11, 12, 13, 14, 15, 16, 17, 18

and 19 before finally finding MAC address 20.

The same wasteful sequence will again happen for MAC

addresses 20, 30, 40 and 50. Even worst for this last one

address, as its MAC address is set to 127 which is the

maximum allowed MAC address for MSTP devices and

every 50 tokens received, it will look for addresses from

51 and all the way thru 127 and then fold back to MAC

address 0 all the way to 49 until it finds some device that

is present.

And this will repeat forever, for every single node every

50 times the token is received by it!

Once again, but now in big size, the golden rules for

MSTP networks are:

 Leave NO-GAPS in MAC

addresses.

 Set MAX MASTER of the last

device on the network to its own

MAC address + 1.

 Follow good RS485 wiring

practices using EOL and BIAS

resistors to properly polarize the

bus and avoid reflections that

will corrupt data.

The following Wireshark MSTP capture shows this

wasteful sequence in great detail, where each Poll-For-

Master frame kills around 50-80 milli seconds of network

bandwidth in the field bus.

Image showing the Poll-For-Master sequence of

different MAC addresses with GAPS.

By using a good MAC addressing scheme you will ensure

a fast and responsive BACnet/MSTP network.

In this other example we can see that when MAC address

8 is taken off-line, the Poll-For-Master searching for the

next MAC address heals the token cycle by polling from

MAC addresses 9 thru 20 and then folds back from 0 all

the way up until it finds MAC address 4.

At that time, the node with the MAC address 4 replies

with the Reply-To-Poll-For-Master frame and then

finally the token sequence can start again.

The whole process took from frames 326 thru 343 and

spanned from 3.549 to 4.316 seconds = 767 milli seconds

therefore, to traverse those 17 nodes to heal the

network, an average Poll-For-Master time of 45.5 milli

seconds was used or better say wasted.

If MAX MASTER had been set to 127 instead of 20, the

time to heal a broken network would have taken instead:

9 thru 127 + 0 thru 4

= 122 nodes

= 5.504 seconds.

Frame # Timing Difference

3 0.014991 Maximum 0.080

4 0.094945 0.079954 Minimum 0.048

6 0.110937 Average 0.056

7 0.158909 0.047972

10 0.174900

11 0.228720 0.053820

14 0.238863

15 0.286836 0.047973

18 0.302827

19 0.350799 0.047972

